Péter Bayer, Robert A. Gatenby, Patricia H. McDonald, Derek R. Duckett, Kateřina Staňková, Joel S. Brown
Read the preprint
Table 1: Payoffs of a pure coordination game with two players and two strategies
Once coordination is achieved, the winning strategy is fixated while the losing strategy goes extinct. The game is, in appearance, over, and unless one knows to look for them, the losing strategies cannot be observed, so these games can be hard to identify in applications. An evolutionary game of cancer cells with two strategies (types) is characterized by four payoff values. Let \(r_i\) and \(d_i\), for \(i=1,2\), denote the payoff/fitness of a type i cell in its own environment, and in the other type’s environment, respectively. The full game is shown in Table 3. We can assume that \(r_1≥r_2\) without loss of generality (Table 2).
Table 3: A game between two cancer cell types
For this to be a coordination game, the payoffs need to satisfy \(r_1>d_1, r_2>d_2\) and if \(r_2>d_1\). See our Supplementary Information for the detailed conditions of coordination games.
Table 4: A model of cancer growth governed by a coordination game
Most of the model’s components behave identically to Lotka-Volterra competition models: the environment has a carrying capacity K and an extinction threshold T that are shared by the two populations. The populations have type-specific death rates, \(c_1,c_2\) as well as type-specific mutation rates \(m_1,m_2\), by which the two types mutate into one another, capturing the phenotypic variability and instability of cancer. The type’s growth rates are governed by the coordination game. Purely type 1 and type 2 tumors grow at rates \(r_1\) and \(r_2\), respectively. The types’ growth rates in a mixed tumor are given by a combination of their fitness in the own environment, \(r_i\), and their fitness in the opposing type’s environment, \(d_i\). The convexity parameter \(\alpha≥1\) determines the growth rates’ frequency-dependence (see our Supplementary Information for a detailed discussion). We illustrate this model in Figure 1. The maximum size of the tumor (the upper bound of the region with positive total cell growth) is V-shaped: more homogeneous tumors can sustain higher populations. The extinction zone (the lower bound) is its flipped mirror image: more homogeneous tumors are easier to sustain. The heatmaps of tumor growth (Figure 1) reveal two “peaks” of tumor fitness at the two ends of the composition, divided by a low fitness “valley” in between.
Figure 1: The heat map and phase diagram of tumor fitness and composition. Parameters: \(r_1=0.25,r_2=0.17, d_1=d_2=0,K=100,T=10,c_2=0.1,c_1=0.05\).
The phase diagram reveals the deeper mechanics. At the extreme levels of tumor composition, mutation pushes the system “inward” to a more heterogeneous tumor. However, in the interior, the coordination game pushes the tumor “outward”, to a more homogeneous tumor, creating two stable equilibria where composition is mostly but not completely homogeneous.
We consider a classic sensitive-resistant model: type 1 is sensitive and thus therapy raises its death rate by a value γ_1>0, while type 2 is resistant, so its death rate is unaffected, amounting to \(\gamma_2=0\). While any difference between the types’ reaction to the cytotoxic agent can be leveraged, our setting captures an extreme case for convenience of illustration.
Figure 3 illustrates the system given by (3)-(4) with therapy off (left panel), and therapy on (right panel). Without therapy, the system is reminiscent of the top half of Figure 2’s right panel, producing two stable equilibria. The near-vertical composition zero-isocline at g=40% marks the border between the basins of attraction: small tumors with more than 40% type 1 cells will grow to coordinate on the type 1 equilibrium, those with less than that will grow to coordinate on the type 2 one. As type 2 is resistant, continuous therapy leads to a single stable equilibrium dominated by type 2 cells.
Figure 3: The phase diagram of the model defined by (3)-(4) with cytotoxic therapy off (left) and on (right). Parameters: \(r_1=0.4,r_2=0.2,d_1=d_2=0,K=150,c_1=c_2=0.05,m_1=m_2=0.01,γ_1=0.4\).
Imagine that, at the initiation of the therapy, the patient presents with a sensitive tumor. Without intervention the patient progresses when his or her tumor burden reaches a critical mass of sensitive cells. Under continuous cytotoxic therapy, after a good initial response in tumor size, the population begins climbing again once it achieves coordination on the resistant type and the patient progresses (Figure 4, top left panel). However, in doing so, the system transits through the unstable middle region where the tumor is heterogeneous, and its fitness – sans therapy – is small. Stopping therapy at that point traps the tumor in the fitness valley. As this region is unstable, the tumor will spend some time here, then reach coordination on one type or the other. Whether it achieves coordination on the sensitive type or the resistant one depends on whether the tumor reached the resistant basin of attraction. If therapy is stopped at a point when composition is below the threshold 40%, the tumor will coordinate on the resistant type (Figure 4, top right). If, however, treatment is stopped earlier, the sensitive population will rebound and coordination is achieved on type 1 instead (Figure 4, bottom left). In both cases the patient’s progression time rises as the tumor spends time in the low fitness region. If the resistant type ends up dominating, control over the tumor is lost. On the other hand, if sensitive cells rebound, the process may be repeated, possibly trapping the tumor on multiple occasions and buying the patient more time, until control is finally lost (Figure 4, bottom right). The key difference between coordination games and other models of resistance and adaptive therapies in the discontinuity between the two attractors.
Figure 4: The effects of continuous cytotoxic therapy (top left), stopping at g=39% (top right), stopping at g=40% (bottom left), and an on-off treatment strategy (bottom right). Parameters: \(r_1=0.4,r_2=0.2,d_1=d_2=0,K=150,c_1=c_2=0.05,m_1=m_2=0.01,γ_1=0.4\).
A good application of such an on-off therapy can put both the tumor’s size and composition in a recurring, persistent cycle, and thus can stave off tumor progression indefinitely (Figure 5, left panel). Moreover, under ideal circumstances, the cycles in composition can be sustained as the tumor’s size declines, and the tumor can be driven extinct (Figure 5, right panel). ‘Ideal circumstances’ here refers to the fact that extinction through therapy requires for the physician to monitor the tumor’s composition, which is not within reach. Cycles require monitoring of the tumor’s size and are thus, practicable.
Figure 5: Successful adaptive therapy (left) and extinction therapy (right). The shown adaptive strategy is to apply therapy until cancer population falls to 10, then stop therapy and restart when it reaches 70. Under the extinction strategy, therapy is applied until tumor composition falls below 45% and restarted when it reaches 75%. Parameters: \(r_1=0.4,r_2=0.2,d_1=d_2=0,K=150,c_1=c_2=0.05,m_1=m_2=0.01,γ_1=0.4\).
We note that while other models of adaptive therapies exist, there are no eco-evolutionary models to our knowledge that capture the persistent cycles shown to exist in mouse trials with a basis in cell-to-cell interactions. In other models, sensitivity is not an evolutionary stable “enough” for the tumor for the cycles to truly recur. We invite readers to check out our preprint and our supplementary information document. Comments and thoughts are very welcome! Link to paper. Link to supplementary information.© 2025 - The Mathematical Oncology Blog